R&D is War [Book Review]

This book review isn’t going to take long for a few reasons.

  • This book is almost an autobiography of Clifford Spiro’s career experiences in research and development (R&D), so there’s not much technological review that I can write about
  • While I like to reduce the amount of content in the book to a few basic ideas and expectations, this book already has a “Lessons Learned” at the end of every chapter. I’ve marked each page in the book, so I can just find my favorites and rephrase them here.
  • Finally, this book is a rather smooth read, and it’s sprinkled with sarcasm. This is especially true when he references the sales (order takers) and finance (bean counters) personnel in the workforce. This is even more hilarious when it makes you realize that YOU are doing the exact same comparisons at your work.


I picked up the book R&D is War mostly to see how excited I would get over the idea of re-pursuing a technological-based career path again. I’m currently an applications engineer (which is just a sales person that at least knows that I = V / R ….. along with a few other things). Now I’m at the point where I will not be valued based on improving my technical knowledge for the company, but more on “which customers do I know” and “how many profitable accounts have I’ve been connected with.” It wouldn’t be my preference, but that’s the life in a satellite sales office.

These personnel review meetings, which we discuss these question, make me realize that …………………. I belong somewhere else. Yeah…. that’s a nice euphemism for my internal response.

I got my PhD in microfabrication and phonics, so let’s put it to good use. I was initially scared away from R&D due the stress levels I experienced during my 5 years at MTU. However, I believe graduate school has it’s own deep pit of stress and misery that you wouldn’t find anywhere else.

Note: I will never get back into academia for personal (low levels of collaboration) and professional (academically inbred) reasons. So most of these topics will be mostly industry and slightly government lab based.

The one thing about R&D in industry, in comparison to all other business units, is that it works on the longest time scale. You can’t discern quarterly outcomes of your research like a CFO can look at sales charts. While some incremental development projects can be completed in a year, most work requires 2-5 years before they bear fruition. Thus, R&D employees tend to get the short end of the stick when it comes to company recognition [even look at Nobel peace prize winner Shuji Nakamura from Nichia in my previous book review Brilliant!]. When you invent the perfect material or product, the person that “completes the sale” tends to get the largest monetary compensation.

Another aspect in R&D is how poorly undervalued previously discovered knowledge is. While working on a project that did not turn into a success, it tends to prove useful for additional assignments. This is regardless of if any useful outcome is obtained or if “upper management decided to go in a different direction” [That was the response I got after an on-site interview after graduate school. I still like to question what that actually means ………….].

Based on Spiro’s experiences, the latter happens…… a lot. This personally makes sense, as most of the cost in developing a product or method is within the last 6-12 months getting the mass manufacturing production line up an running. Compared to the tens of millions of dollars to get a large-scale clean room line up and running that only does ONE thing, the lab time and costs are nothing in comparison. Knowledge is discovered and stored for another time.

A typical career in R&D is also not localized to only one field, where being a jack-of-all-trades can significantly help in additional positions. Spiro’s main example is using his rubber experience for light bulb coatings (after coming from coal ‘liquidizing’ and diamond ‘enhancement’).

R&D can also be volatile not just in specialties, but also in different positions at different companies. Industry will pay you well, but it will also let you go (sometimes with “nice parting gifts”). And advancement in each company will be environment dependent, so taking the effort to switch jobs (internally or externally) is sometimes ideal. This is especially true in the current world of globalization, where companies can only survive if they have an outsourced product where cheap manufacturing is the only way to create a cost-competitive product.

Let’s take light bulbs for example. Unless you are a lighting enthusiast, do you really buy lighting fixtures based on the color rendering capabilities of the source. I’m an engineer at a LED company, I still buy the cheapest $1-2 bulbs from Home Depot or Lowes (as long as they are LEDs, I’m fine with that).

At the end of the book, there are also some overall thoughts on intellectual property. The first is due to the risks for a company going global. Employees don’t just “pick up and fly to China,” so you have to employ local candidates in the area and train them, sometimes to replace your job before the company lays you off. These new employees need to know how to exactly develop and design the competitive product that you made at corporate R&D.

However, when you build sites in additional countries where IP laws are not as strict, there’s a chance that employees will just leave for other companies and utilize your “secret recipes” for their new company’s behalf. Spend millions on development, or pay someone $100,000/yr salary for the same knowledge at instant speed? Who wouldn’t do that? That’s why all job applications ask for candidates with “5+ years of experience”…………

[Ironically, all the Intel positions I’ve recently looked at were asking for 3 months. I like this approach. It basically asks a “Can we have an intelligent conversation on this topic? Yes or No?”]

Additionally, IP in the form of patents are typically a negative investment for most companies. Patents are an easy way to disclose your product research to everyone. And since they are so detailed, it’s easy for competitors to utilize and just “build off of that work” into something that is “unique” enough to sell in the market. Legal IP fights are too expensive for individual or small companies to compete in. The patent filing process also takes 2-5 years to complete as well [my patent is on year 3 right now in the filing process….], so the company should already be working on the next best thing by the time the patent is out in the public.

Bottom line: There’s a time and place for everything…….but a patent may not always be a the best option.

And that’s R&D in a nutshell….. in another nutshell.

I personally felt invigorated reading the book, and it only took a few leisure hours to finish the 160 pages of larger-than-normal text. Some people need the feedback of seeing their work go into a final product, and R&D would drive these individuals somewhat crazy. That’s one of the reasons why my manager left Yazaki to work for OSRAM OS as a sales engineer. I find myself to be the opposite. I personally wouldn’t mind working with projects that kept being ‘canned,’ as long as my diligence and hard work is appreciated.

I don’t expect raises or external gratification to be happy. I already get paid enough to feel comfortable living life [I’m a true believer that happiness scales with pay until you reach $75,000. From there on, personal happiness is all about expectations in luxury and tastes]. I find an inner happiness when I can play with expensive ‘toys’ and feel like I own a part of the company’s knowledge. The one thing I won’t stand for is negative feedback for a ‘lack on a return on investments.’ If the company’s management understands these risks and timeline associated with R&D,  I will gladly work with them.





Brilliant! [Book Review]



In the realm of available books to read, the selection of those involving an inventor’s contribution towards a technological breakthrough for the benefit of society are slim. And even most of these are written by the inventors themselves, which tend to be smeared with a level of “smugness.” It’s almost like it’s the frosting on the celebrity cake that they have created for the fruits of their labor.

I swear, the main job of celebrities is to make sure that no one forgets that they exist….. books, shows, charities. (“philanthropists”…….I’m pretty sure most people with a multi-million dollar income would donate that level of income to those in need. What else would you do with it?)

The story of this book as portrayed by Bob Johnstone, the author, is slightly different. While Shuji Nakamura (the inventor of the bright blue LED) takes the center stage in this novel, this book is written as a story on both the technological reasoning behind the inventor, the political friction that evolved from these advances, and the opportunities that have arisen thanks to the various players in the new market.

Brilliant! is the story on the creation and adaption of the efficient and commercially viable blue LED. While blue LEDs have been made in the past, the efficiency was worse than the energy guzzling incandescent bulbs based from Edison’s original invention. These previous Silicon Carbide blue LEDs were mostly used to make small icons glow in various electronic devices, which isn’t that exciting. And we’ve had red LEDs for quite a while, which had a similar impact.

Another significant factor: the shorter the wavelength (blue or purple …. for those non physicists out there), the more useful the color typically is for extended applicatinos. It’s a lot easier (and efficient) to lengthen light (from blue to red) than it is to shorten it (from red to blue).

With the realization of blue LEDs, one can use part of the blue output to create other colors, including green, yellow, and (most importantly) white.

Blue + Yellow = White

White LEDs: the new source of interior illumination (Alliterations are awesome!).

Note: Yes, you can just create an LED that either creates green or yellow light. However, there are characteristics that blue LEDs plus a converting material have over a standard LED. For example, there’s no real magical formula to create a cheap, efficient green LED; efficiency peaks at blue and red for InGaN and InGaAlP respectively, the two chemical compounds currently used for commercial LEDs. InGaAlP LEDs used for red and yellow LEDs are also more sensitive to heat than blue InGaN LEDs, which makes them less practical for high power or extreme environmental applications (bright lights in broad daylight : the best of both worlds).

This literature starts its first quarter out as a biography of Shuji and his early career at Nichia Corporation. Not wanting to leave his comfortable rural area in Japan, he gets employed straight out of college at the local phosphor company. With a strive to make something successful for the company, he ruthlessly purses R&D in various projects with not much to show from it. While initial successes were always too late to market for any significant success, strongly due the small R&D headcount of ~1 in his field, he becomes desperate. Going against management internal politics, and gambles in the development of InGaN LEDs, which seemed impractical at the time.

[I’m still hoping that room temperature superconductors become a reality in my time…..]

During that time, there was a LOT of interest in creating blue LEDs, and there were two compounds with the “energy potential” to emit blue light efficiently: InGaN and ZnSe. And due to significantly high levels of failures from large-firm companies, only a few people still stuck with InGaN technology until Shuji’s development of the ideal recipe. However, when reality hit the fan, that’s where things got complicated.

The second section talks about some of the major shifts in lighting trends. Portable, efficient lights for third world countries become a beneficial alternative to burning flammable kerosene that produced hazardous fumes inside living quarters. LED lights made post-sunset activities more efficient and safe for those in remote locations. The realization of isolated safety and warning lights for remote locations became a realizable market, which included off-shore and sunlight-rechargeable applications. The evolution of lighting as a architectural aspect and main theme also allowed more control in directional lighting and color-controllable aspects thanks to RGB LEDs (Red, Green, and Blue LED inside a single device).

Similar manufacturing methods can also be utilized in the creation of UV LEDs. This market is filled with a plethora of different applications, from curing polymer materials in manufacturing to disinfecting water and public areas (including the bathroom). Previous sources of UV sources came from high-voltage Mercury vapor bulbs, a hazardous material, which emits a broad spectrum of wavelengths. UV LEDs have a fine, tunable output spectrum of energy which allows for more control in commercial and industrial applications.

However, this story is not all unicorns and rainbows. After making Nichia THE TOP manufacturer of LEDs in the world , Nichia…….basically treated Shuji like shit. No major pay raises were given to the inventor. In addition, they sideline him to a paperwork-pushing job out of pure spite by the head management and the CEO himself.  This “assumed sacrifice” that seems well-acknowledged in Japanese culture degraded Shuji to the point where he did something that’s frowned upon in his home country; he left his first company. He took an offer to work as a researcher associate in Santa Barbara.

He turned down a $500,000 salary from CREE during the process.

Of course, he did this to try and escape possible patent infringement that could arise from working with a competitor in the LED manufacturing market. However, Nichia still decides to sue this purely academic being on fraudulent claims of “leaking company secrets to its competitors.” This was also done in parallel with Nichia’s numerous lawsuits with its competitors to keep its choke-hold monopoly on the global production of InGaN LEDs. This latter half makes sense from Nichia’s standpoint with the goal to keep as much possible revenue within its country. The rural, formerly small-sized company has a strong desire to protect (most of) its employees with job security and a flourishing local economy.

But going after its former employee with massive lawsuits and filing their own fraudulent attempts to ruin Shuji’s reputation as the sole inventor of the blue LED…….Nichia even goes to the lengths of publishing and handing out free copies of their own book, “Blue Light Emitting Diode: Invented by Nichia Corporation and Its Young Engineers” (by anonymous authors….. of course). This book portrays a false tale of the company’s dedication of technological pursuit as a whole-company discovery and not a one-man army. Angered by the excess legal battles with Nichia, Shuji files his own counter lawsuit to reclaim some of the company’s profit gained based on his invention. This amount should have been around $190 million, but it was settled at ~$8 million (half of which went to cover Shuji’s legal bills, and the rest was definitely not worth the stress).

There is a fourth quarter of the book, but it’s more of a continuation of the second quarter in terms of emerging markets and lighting trends. I found myself skimming over this section due to the boring aspects of “famous people” finding more “novel business models.”

Despite the last quarter of the novel, I found the book a very entertaining read. It expressed a lot of the technical areas that both explained the complications realized during the history of the blue LED, but also the technical reasoning why specific methods or models were used. There is discussion on the “snow” that can occur in the semiconductor crystal growth chambers (MOCVD). The selection of growth processes and substrate issues involved in LED fabrication are also brought up. All of these technical topics are not expressed in academic detail but enough that even the uneducated reader can understand and comprehend.

I even learned a few new things, as some aspects in technology (such as selection of growth methods) are not easily found in textbooks or scholarly papers without a fight.

Oh yeah, the book also does have a few images showing various players in the book.